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Progress in the last 25 years towards realistic theoretical calculation of linear and
non-linear electric susceptibilities of molecular materials is reviewed. Key issues are
proper treatment of local electric fields and of the spatial distribution of molecular re-
sponse. The local fields contribute directly to the susceptibilities and indirectly by modi-
fying the molecular response in the material. Distributing molecular dipolar response
over equivalent submolecules gives good results if enough submolecules are used. Fully
distributed response including charge transfer within molecules can approach experi-
mental accuracy.
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1. Introduction

Quantitative microscopic theories of linear and non-linear electric and optical
susceptibilities of molecular materials are important for interpreting and controlling
a range of material properties, many of practical significance. Relevant properties in-
clude refraction and non-linear effects such as second-harmonic generation; intensi-
ties of lattice vibrational spectra and electro-absorption spectra; and charge-carrier
generation, transport and trapping. Aspects of the necessary theory were reviewed
some years ago [1].

Since that time, significant progress has been made in two areas. The role of the
local electric field induced by an external applied electric field has long been recog-
nized as essential to treatments of electric susceptibilities in molecular materials. It
has also long been recognized that molecules respond to the local field through effec-

tive polarizabilities and hyperpolarizabilities appropriate to the material environ-
ment. One important factor that makes the effective response differ from that of the
free molecule is the local field due to the permanent charge distributions of neigh-
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bouring molecules in the material, and calculations of this field and its effect on re-
sponse are now becoming available.

Secondly, in 1976 Luty recognized the importance of going beyond the treatment
of molecules as single points [2]. Instead, he introduced the idea of chemically equiv-
alent point submolecules over which the molecular polarizability is equally distrib-
uted. This approach was then extended to polycyclic aromatic molecular crystals,
where it was shown to suppress unphysical negative polarizabilities required to fit a
point-molecule treatment to experiment [3].

The submolecule approach has proved tractable and yields physically realistic re-
sults by taking account of the spatial variation of the local field over molecules. How-
ever, it relies on what may be an arbitrary choice of submolecules. Moreover, it
cannot take explicit account of charge redistribution within molecules in an electric
field: even a uniform electric field implies a constant potential gradient that drives
charge flow. Handling such distributed response requires a generalized treatment
such as that presented by Stone [4]. A tractable implementation of this treatment us-
ing the topological Atoms-in-Molecules method has been applied to the pola-
rizability of isolated molecules [5], and has been extended to the water dimer [6] and
to non-linear response in molecular crystals [7].

The present article reviews the present state of knowledge in theoretical interpre-
tation and prediction of linear and non-linear electric susceptibilities in molecular
materials. We emphasize the role of permanent electric fields in modifying the molec-
ular response in the material environment, and the treatment of distributed molecular
response. We present not only a systematic account of previous work but also some
new examples. We stress applications of theory rather than the theory itself.

2. Local Fields and Susceptibilities

In this section, we summarize the basic theory required to treat the local field in-
duced by an external field and the susceptibilities of a molecular material. Our con-
cern will be results rather than derivations available elsewhere [1]. We begin with a
crystal in a point-molecule treatment; although a major concern is the effect of dis-
tributed response, this does not alter the basic algebraic theory. The theory is also
readily extended to disordered materials.

The crystal has Z molecules labelled k in the unit cell, with polarizabilities �k and
first and second hyperpolarizabilities �k and �k. All response coefficients have a fre-
quency dependence, which will not be written explicitly. The local electric field at
molecule k is Fk, which for linear response is related to the usual macroscopic electric
field E by

Fk = dk � E (1)

Here dk is the local-field tensor, given by
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where I is the 3Z unit matrix, L is the 3Z matrix of the Lorentz factor tensors Lkk’ ob-
tainable from the crystal structure [8], and a is the block-diagonal 3Z matrix of the re-
duced polarizabilities ak = �k/�0v, with v the unit-cell volume. The linear electric
susceptibility follows as
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which shows how the refractive indices can be calculated given the polarizabilities
and the crystal structure.

For non-linear response, the local field also becomes non-linear. However, the
susceptibilities can still be expressed in terms of the previous local-field tensor. The
quadratic susceptibility is [9]
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where bk = �k/�0v. The cubic susceptibility (3) is the sum of a direct term
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where ck = �k/�0v, and a cascading term
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where the operator �I generates all distinct terms by interchanging different frequen-
cies [9,10]. The quadratic susceptibility is zero in centrosymmetric materials in the
dipole approximation, but if the molecules are non-centrosymmetric their first
hyperpolarizability can make a significant contribution to the cubic susceptibility
through the cascading term. We shall not consider here effects that go beyond the di-
pole approximation to yield bulk [11] or surface [12,13] quadratic response in
centrosymmetric crystals.

For disordered materials, these expressions can be applied directly with the crys-
tal unit cell replaced by a simulation box. Appropriate averaging is then applied. This
approach has the advantage that the Ewald sum implicit in the Lorentz-factor tensors
provides a rigorous and efficient treatment of long-range dipole interactions [14]. We
do not consider here any cavity treatment of local fields.
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3. Permanent Local Fields and Molecular Response

Admitting non-linear molecular response yields non-linear material response. It
also yields linear molecular response that depends on the electric field, and in the ma-
terial environment such a field is provided by the permanent charge distributions of
the surrounding molecules. Thus even in treating linear material response one needs
the molecular polarizability evaluated at the relevant permanent local field F

p. For a
crystal in which the molecules have effective dipole moments �k, this field is given by
[15]

F Lk

p
kk k

k


 �� ' '
'

/� � �0 (7)

where it is assumed that there is no bulk crystal dipole moment [16].
This approach was first applied to the HCN crystal [15]. Equation (7) giving the

permanent field in terms of the dipole moment was solved simultaneously with quan-
tum chemical calculations of the dipole moment in a finite field. The effect on the
polarizability was reported to be small. Later the extension of the approach to
non-linear response was described [17] but not implemented numerically. Even-
tually, a detailed numerical treatment was given for the linear, quadratic and cubic
susceptibilities in the urea crystal [18]. The effective dipole moments required to cal-
culate the permanent field from Eq. (7) are given by [16]
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where� k
0 is the zero-field dipole moment. The local-field tensor is to be calculated us-

ing the effective polarizability at the permanent field. This is approximated by its
value calculated at zero field, which gives a first estimate of the permanent field via

Equations (7) and (8). The quantum-chemical calculations are then repeated, after
which the procedure had converged for urea. It was also found that the demanding
high-level calculations needed to be performed only once, since the zero-field first
and second hyperpolarizabilities gave an adequate description of the field depend-
ence of the polarizability up to the permanent field. The numerical results showed
rather little effect of the permanent field on the polarizability and linear susceptibility
(as in HCN), with good agreement with the experimental refractive indices. The ef-
fect on the first hyperpolarizability was very large, with some components doubling
in magnitude and changing in sign. However, a fortuitous cancellation led to much
smaller effects on the quadratic susceptibility. For second-harmonic generation, this
agreed well with experiment for SCF calculations, but these gave refractive indices
that were too small. Once electronic correlation was included at the MP2 level, the
quadratic susceptibility was too large by a factor of nearly 2, while the experimental
refractive indices were nearly quantitatively reproduced.
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An alternative approach [19] has been to calculate the linear and quadratic sus-
ceptibilities of urea crystal from first principles quantum-mechanical theory, using
band theory with the Kohn–Sham local density approximation. This method is based
on the determination of single-electron wave functions in a plane wave basis using the
pseudopotential approach. Local-field effects associated with the linear response are
incorporated by an iterative method [20], and the non-linear response is calculated us-
ing sums over a large number of eigenstates determined by diagonalization in the
plane-wave basis. The results for the refractive indices of the urea crystal were too
low compared with experiment, while the second-harmonic response was in good
agreement with experiment, if the revised value [21] for the reference standard value
of potassium dihydrogen phosphate (KDP) was used rather than that in the original
experimental report [22]. The calculated susceptibility components, including lo-
cal-field effects, were aa = 2.0, cc = 2.3, and |abc| = 2.2 pm/V, at �� �. These agree
very well with those reported previously at the SCF level [18], namely aa = 2.0, cc =
2.1, and |abc| = 2.1 pm/V at � = 632.8 nm for the electro-optic Pockels effect, even
though effects due to hydrogen bonding and large inter-cell charge transfer neglected
in the approach of Ref. [18] are stated [19] to be large and should therefore make the
band theory approach superior.

This good agreement in the predicted susceptibilities suggests that the two meth-
ods may generally be of comparable quality for molecular crystals. If so, attempts to
go beyond the self-consistent field approach, shown to be important as in urea as well
as in many cases considered so far at the level of single-molecule response plus
intermolecular electric field interactions, will probably be easier in the single-
molecule response approach than in the band theory approach, where such attempts
lead to high computational costs [23]. Note that the term “local field” has slightly dif-
ferent meanings in the two approaches: in the single-molecule response approach it is
a Lorentz-type local field at a specific point in space where the molecules are assumed
to be located, although calculated more accurately using a discrete approach instead
of a continuous polarization [1], while in the band theory it represents a spatially
varying potential acting in a distributed way throughout the unit cell [24]. It should be
mentioned finally that, unlike the single-molecule response approach, the density
functional approach using band theory is applicable also to covalent crystals, with
which indeed the majority of reported calculations have been concerned [25].

As already mentioned, the methods described in Section 2 can also be applied to
disordered materials, if a pseudo-ordered structure is assumed, where a simulation
box is repeated to fill three-dimensional space. Such models have been used to calcu-
late the linear and non-linear susceptibilities of pure liquids, namely benzene [14,26],
nitrobenzene [27] and water [26]. A two-step approach was adopted in these calcula-
tions, where in the first step the structure of the liquid was calculated by standard mo-
lecular simulation techniques, and in the second step the response of the liquid to
externally applied fields was calculated, thus allowing the extraction of macroscopic
susceptibilities. The use of partial charges in the structure calculations to simulate the
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intermolecular electrostatic interactions made it possible to predict the distribution of
permanent local fields in the liquid.

The method was introduced for liquid benzene [26]; different strategies to extract
the susceptibilities were compared and found to be in good agreement, and the pre-
dicted values were compared with those resulting from a standard Lorentz local-field
factor approach, which was shown to yield a slightly worse agreement with experi-
ment. Later, the hyper-Rayleigh scattering depolarization ratio of liquid nitrobenzene
was predicted [27]. It was found that the contribution of coherent scattering to the de-
polarization ratio is not negligible for the hyper-Rayleigh scattering signal of this sys-
tem, and consequently should be taken into account generally for pure liquids.
Although the permanent local fields were calculated in both liquids, no assessment of
their influence on the molecular properties was made, nor was a possible molecular
size effect taken into account. While the permanent local fields were relatively small
and may not have large effects, and the size effect in benzene is small, as shown for the
benzene crystal [28], the distribution of the molecular response for nitrobenzene us-
ing the submolecule approach described in the next section has a large effect on the
crystal susceptibilities [29] and may therefore alter the predicted liquid response as
well.

The molecular electric properties were calculated with moderately large basis
sets and electronic correlation effects were taken into account, using Møller-Plesset
theory at different levels. For all the liquids considered the electronic correlation ef-
fects were found to be quite large, especially on the non-linear properties. While in
the first applications [27,28] only static properties were calculated, later dispersion
effects were taken into account [26] and were found to have a large, non-negligible ef-
fect for both benzene and water.

That work emphasised the comparison of theoretical and experimental liquid sus-
ceptibilities free from any problems associated with the still unresolved question of
the correct absolute values of the experimental reference standard [30], which gener-
ally complicates all comparisons between theoretical and experimental nonlinear
susceptibilities. This was achieved by calculating the third-harmonic generation
(THG) signal of liquid benzene and water, and comparing the ratio (3)(water)/(3)(ben-
zene) with the experimental ratio. The prediction of the discrete local field model was
compared with those of two continuum local field models, the Lorentz model and the
Onsager model extended to non-linear optics by Wortmann and Bishop [31], which
takes permanent local-field effects into account. The experimental gas-phase (hy-
per)polarizabilities and the refractive indices of the liquids (which are free from prob-
lems associated with experimental calibration standards) were very well reproduced,
independent of the models employed in the case of the refractive indices. On the other
hand, the predicted ratio (3)(water)/(3)(benzene) was rather poor compared with ex-
periment, with the Onsager model yielding a value just inside the sizeable experimen-
tal error bars. Additionally, the predicted absolute (3) values differed considerably
between the discrete local field model and the extended Onsager model.
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However, the assertion [31] that no cavity field factor involving the third-
harmonic frequency 3� appears in the expression connecting the cubic susceptibility
with molecular properties has recently been called into question [32], essentially
from the argument that such a factor is included in the presumably more accurate dis-
crete field theory and should therefore appear in the extended Onsager model, too. If
this factor is taken into account, the large difference between the (3) values for the
Onsager local-field model and the discrete local-field model in Ref. [26] essentially
vanishes, but then the predicted ratio of the Onsager model becomes worse compared
with experiment. One possible explanation for the discrepancies between theory and
experiment may be large intermolecular charge-transfer effects on the second hyper-
polarizability in water. Such CT and other non-electrostatic effects on the linear
polarizability have been reported for water clusters [33] and for the water dimer [34],
and although small, might be much larger for the hyperpolarizabilities. If relevant,
these effects would probably also show up in ice isomorphs, and hence one possibility
to check the importance of non-electrostatic interaction effects could be to perform
DFT/band theory calculations on one of the ice polymorphs, for which predictions by
the single-molecule response approach coupled with electrostatic interactions have
been published [35].

4. Submolecules and Distributed Response

As noted in the Introduction, distributing dipolar response over submolecules al-
lows apparently realistic effective polarizabilities to be derived from experimental
linear susceptibilities. This treatment is reminiscent of distributed multipole analysis
[36], which improves the convergence of electrostatic interactions by superimposing
expansions about a set of atomic origins instead of a single molecular origin. Most
early applications treated polycyclic aromatic molecules, with one submolecule per
ring, and used the submolecule effective polarizability to provide a unified descrip-
tion of a range of crystal properties [1].

The effect of the choice of submolecules was seldom explored in early work. The
primary aim was to obtain physically plausible polarizabilities for modest computa-
tional effort. These polarizabilities differed form those obtained from quantum chem-
istry, but this was to be expected because of environmental effects. Moreover, at that
time polarizabilities from quantum chemistry had known deficiencies for these large
molecules that made it unreasonable to use them to predict crystal refractive indices.
The original submolecule treatment 25 years ago took the C–Cl fragments in hexa-
chlorobenzene as submolecules [2]. Heavy atom (non-hydrogen) submolecules were
used 25 years ago to treat local-field effects on spectra of doped anthracene crystals
[37], and a little later it was found that for carbazole point rings gave rather unsatis-
factory polarizabilities, so that the heavy atoms were taken as submolecules [38].

The quality of the submolecule treatment may also be gauged from the local fields
calculated using the resulting polarizabilities. Calculations for acetanilide
(PhNHCOCH3) gave a local field tensor component along the crystal a axis that was
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less than unity [16], when values nearer 1.5 are more usually found. This work treated
the phenyl ring as one submolecule and the remaining heavy atoms as the others. Sub-
sequent work with different choices of submolecules shows that the unusually small
local-field component is essentially independent of the detailed representation of the
side chain but assumes a more reasonable value of about 1.4 once all carbon atoms in
the phenyl ring are treated as submolecules [39]. At the same time, the components in
the other crystallographic directions reduce from about 1.7 to 1.6.

More recently, developments in the techniques of quantum chemistry and in-
creasing computer power have made it possible to calculate molecular polari-
zabilities in good agreement with experiment for isolated molecules. It has therefore
become reasonable to see how well such high-level calculations predict crystal re-
fractive indices, which again raises the question of how to represent the molecule in
the crystal. The treatment for urea crystal, treated both at the atomic and the molecu-
lar level, has already been described, and has shown that in this case the distribution
of the molecular response over the heavy atoms has only a small effect on the calcu-
lated susceptibilities [18]. The same was found for the benzene crystal [28]. A sys-
tematic study, extending to non-linear response, has been reported for naphthalene,
anthracene and meta-nitroaniline (mNA) [40]. The molecular response properties
were calculated with density functional theory, using specially designed basis sets for
the calculation of hyperpolarizabilities [41] and, for comparison, at the SCF and cor-
related second-order Møller-Plesset (MP2) level, using a standard 6-31++G** basis
set. This work allowed comparison with early work treating the aromatic hydrocar-
bons as point rings, as already mentioned, and with work on mNA for non-linear op-
tics [42]. For the aromatic hydrocarbons, treating all heavy atoms as submolecules
gave refractive indices in satisfactory agreement with experiment. For mNA, treating
all heavy atoms as submolecules was essential even to give the correct ordering for
the refractive indices. Treating the molecule as one point or three points gave the re-
fractive index along c-axis as largest, when experimentally it is the smallest. The
work on mNA also took account of permanent electric field effects. These are not
large in the refractive indices, but were quite large for the first hyperpolarizabilities
and only the inclusion of these effects led to second-order susceptibilities (2) that
were in reasonably good agreement with experimental values.

5. Charge Flow and Molecular Response

The treatments described so far have two shortcomings. The first is that the effect
of the permanent electric field on molecular response is calculated by subjecting the
molecule to a uniform field that is the average permanent field over the atoms or
submolecules. Since the spatial variation of electric field in the crystal is very large,
this treatment is questionable. The second shortcoming is that the treatment allows
dipolar response within atoms or submolecules but not charge flow between them.
Since even a uniform electric field corresponds to a linear gradient of electric poten-
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tial that drives charge flow, including charge flow would seem desirable. Such re-
sponse is necessarily distributed over the molecule.

Distributed response of all orders of multipole moment to all orders of potential
gradient can be treated systematically [4]. Implementation then requires a suitable
definition of atomic or other regions and what can be rather demanding integrations
over the regions so defined. For this purpose, the topological Atoms-in-Molecules
method was found to be tractable and to yield results that do not change markedly
with basis set [5]. The first application to a molecular crystal was for urea [7], where
comparison with experiment was complicated because the treatment did not include
correlation. For linear response, the distributed response gave modest increases over
the values without correlation. Assuming that the inclusion of correlation would have
similar effects for distributed response and the usual dipolar response, the distributed
response would again give good agreement with experiment. For the quadratic re-
sponse, the effect of the distributed response was more marked and of a magnitude
and sign sufficient to offset the over-estimate obtained from the usual dipolar re-
sponses when correlation was included.

A different approach to the same problem has recently been adopted [43]. Here a
cluster of molecules is treated, with charge conserved within each molecule. The
charge and dipole interactions are calculated explicitly and included in an INDO/S
self-consistent computation in a suitable atomic basis. This allows charge flow within
molecules and the development of atomic dipoles under the influence of the other
molecules. The approach can also be used to supplement high-level calculations of
the usual molecular polarizability. In this way, good predictions are obtained for the
refractive indices of anthracene (with the greatest deviation in the largest component,
as found in previous work [40]) and for perylene tetracarboxylic acid dianhydride
(PTCDA). This work can be regarded as calculating the effective polarizability in the
crystal environment, including charge flow. It then uses the polarizability separately
to calculate the crystal properties. This avoids potential dangers in using cluster cal-
culations to calculate crystal behaviour directly when there are long-range condition-
ally convergent dipole interactions to consider [44].

6. Conclusions

In this article, we have reviewed approaches developed over the last quarter cen-
tury to calculate linear and non-linear electrical and optical susceptibilities for molec-
ular materials. The materials discussed have been mainly ordered crystals, but key
illustrations have also been drawn from disordered crystals and liquids. We have con-
centrated on our own work, but we have reported work by authors who have adopted
approaches that rely on similar physical principles and find them effective.

The key factors in calculating these optical properties are as follows.
• Proper treatment of long-range electric fields in condensed matter.
• Inclusion of permanent electric field effects on molecular response.
• Distribution of response over molecules.
• Allowance for charge flow within molecules.
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The response also needs to be calculated taking due account of correlation and fre-
quency dependence.

Once these factors are all incorporated, the current evidence is that crystal and
other condensed matter properties can be predicted in reasonable agreement with ex-
periment. Such predictions cannot approach the precision of two decimal places or
better required to map the locus of phase matching for second-harmonic generation in
a crystal. They can however interpret existing measurements and supplement them
where they are incomplete, for example because of problems with crystal growth or
habit. One recent example is the prediction of the missing refractive index in the
�-sexithiophene crystal, which proves to be large [45].
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